ﬂ Perfect
Abstractions

Tokentrust Canvas Audit

Table of Contents

1 Tokentrust Canvas Audit
e 1.1 Overview

* 1.1.1 Objectives
¢ 1.1.2 Scope

| High Risk

2 Changes after sale enable theft of funds
e 2.1 Examples

e 2.1.1 Example 1
e 2.1.2 Example 2

e 2.2 Recommendation
3 Claiming refunds on ongoing auctions make NFTs free
e 3.1 Example
e 3.2 Recommendation
4 Canvas one can be refundable dutch
e 4.1 Example
e 4.2 Recommendation
5 Reserve Auction can be bypassed
e 5.1 Example
e 5.2 Recommendation

6 Reserve Auction mints wrong canvas

e 6.1 Recommendation
7 Wrong token ID in mintReserveAuction

e 7.1 Recommendation

8 Refundable dutch with zero dutchEndTime enables theft of funds
e 8.1 Example

e 8.2 Recommendation

Il Medium Risk

9 Change of saleToken can result in wrong revenue
e 9.1 Example

e 0.2 Recommendation

10 Collection to canvas mapping does not work for canvas one
* 10.1 Recommendation

11 Canvas can have unlimited supply even in case of dutch auction

e 11.1 Recommendation
12 VRF subscription cannot be cancelled
e 12.1 Recommendation

13 Never ending refundable dutch

¢ 13.1 Recommendation

Il Low Risk

14 Lack of selectedTraits validation in mintReserveAuction
e 14.1 Recommendation

15 Lack of validation for time settings
» 15.1 Recommendation

16 Canvas that is not one can have reserveAuction flag
» 16.1 Recommendation

17 Canvas can be a reserve auction and a dutch auction
e 17.1 Recommendation

18 externalUrISlash cannot be updated
» 18.1 Recommendation

19 There can be more purchaseldentifiers than tokens minted
* 19.1 Recommendation

20 Same trait can appear twice in URI
e 20.1 Recommendation

21 Partner must send more ETH than needed
e 21.1 Recommendation

22 Lack of subscription validation in VRF
e 22.1 Recommendation

23 updatePurchaselds can overwrite purchaseldentifiers
» 23.1 Recommendation

24 Storage changes after external calls

e 24.1 Recommendation

25 Looping through big arrays can cause failure

e 25.1 Recommendation

26 Loops do not break when possible
e 26.1 Examples
e 26.1.1 Example 1
e 26.1.2 Solution 1
e 26.1.3 Example 2
e 26.1.4 Solution 2

27 Poor sequence of actions in updateCanvas
e 27.1 Example

e 27.2 Recommendation

IV Informational

28 Same validation is being executed in Keeper and VRF
e 28.1 Recommendation
29 Events don't describe changes clearly
e 29.1 Example
e 29.2 Recommendation
30 Logging timestamp in events is redundant
e 30.1 Recommendation
31 Event definitions in Canvas are redundant
» 31.1 Recommendation
32 Storing and reading contract address uses more gas
e 32.1 Recommendation
33 Unused state variables
e 33.1 Recommendation
34 Redundant usage of msg.sender and msg.value
o 34.1 Example
» 34.2 Recommendation
35 Variable shadowing
e 35.1Case1
» 35.1.1 Recommendation
e 35.2Case?

e 35.2.1 Recommendation

36 Initialize can be external
e 36.1 Recommendation

37 checkTransfer is always true
e 37.1 Example

e 37.2 Recommendation

38 Unused code in Customize.sol

e 38.1 Recommendation

39 Redundant ERC20 approval

e 39.1 Recommendation

40 Redundant ERC20 balance check

e 40.1 Recommendation

41 Double checking requireLicense

e 41.1 Recommendation

42 ContractOwner is not an interface

e 42.1 Recommendation

43 Usage of same functions for different actions
e 43.1 Example
e 43.2 Recommendation

e 43.2.1 Other examples

44 Checks if a value is being changed use more gas

e 44.1 Recommendation

45 Usage of SafeMath is redundant

e 45.1 Recommendation

46 Poor logic in domainSeparator

e 46.1 Recommendation

47 Redundant conversions in views
e 47.1 Example

e 47.2 Recommendation

48 Usage of strings increases gas cost
e 48.1 Example

e 48.2 Recommendation

49 Other small inefficiencies
e 491 Inefficiency 1
e 49.1.1 Solution
e 49.2 Inefficiency 2
e 49.2.1 Solution
e 493 Inefficiency 3
e 49.3.1 Solution
» 49.4 Inefficiency 4
e 49.4.1 Solution
e 49.5Inefficiency 5
e 49.5.1 Solution
» 49.6 Inefficiency 6
e 49.6.1 Solution
e 49.7 Inefficiency 7
e 49.7.1 Solution
e 498 Inefficiency 8
» 49.8.1 Solution
e 499 Inefficiency 9
e 49.9.1 Solution

50 Disclaimer

1 Tokentrust Canvas Audit

Perfect Abstractions conducted a smart contract audit of Tokentrust's Canvas Contracts from October 27th to
November 10th, 2022.

The git commit hash used for the audit is 3aafa6e3c42dc5509d2e9¢33bdd3780bc9006522 .
Auditors:
o GaSper Pregelj

Audit report reviewed by Nick Mudge.

1.1 Overview

The Tokentrust Canvas contracts provide a configurable token creation protocol with various sales mechanisms,
distribution methods and output customizability. There is an option to create a single NFT, which is described as 1/1
or isOne inthe code, or a collection of multiple NFTs. The term canvas is used to describe a single NFT in case of
1/1, or a collection.

The main contract Canvas.sol provides the entrypoint interface for transactions and view functions, while
Schema.sol outlines a data storage schema which is shared across the entire protocol. It also defines utility structs
and errors.

The Modules folder contains library contracts that utilize and modify the storage, which allows robust functionality
within a single contract address.

The Collection folder contains an ERC721 factory contract that deploys a new ERC721 contract for each new
Canvas collection. 1/1 Canvases (single NFTs) don't need new ERC721 contracts to be deployed. They are all
contained within two ERC721 contracts. One is permissionless (canvasOne) and the other is curated
(canvasOneCurated). To create an NFT in the curated one, you need to be permitted by the curator. To create it in the
permissionless one, you do not need any permission.

The chainlink folder contains contracts that depend on an external oracle network for verifiable decentralized on-
chain randomness (VRF.sol) and contract automation (Keeper.sol).

A small subset of the protocol has dependencies on two separate contract repositories, TokenRegistry and
LicenseRegistry . These were not part of the audit.

1.1.1 Objectives

1. Find bugs, inefficiencies, design flaws and security vulnerabilities in the code base.

2. Report and make recommendations concerning what was found.

1.1.2 Scope

https://www.perfectabstractions.com/
https://github.com/tokentrust/canvas

The following files were audited:

contracts/Schema.sol

» contracts/Canvas.sol

» contracts/Utils/Parser.sol

» contracts/Modules/View.sol

» contracts/Modules/URI.sol

» contracts/Modules/Minting.sol
 contracts/Modules/Funds.sol

» contracts/Modules/Customize.sol

» contracts/Modules/Create.sol

» contracts/Modules/Core.sol

» contracts/Collection/CanvasCreator.sol
» contracts/Collection/CanvasCollection.sol
» contracts/Chainlink/VRF.sol

» contracts/Chainlink/Keeper.sol

https://github.com/tokentrust/canvas/tree/3aafa6e3c42dc5509d2e9c33bdd3780bc9006522/contracts/Schema.sol
https://github.com/tokentrust/canvas/tree/3aafa6e3c42dc5509d2e9c33bdd3780bc9006522/contracts/Canvas.sol
https://github.com/tokentrust/canvas/tree/3aafa6e3c42dc5509d2e9c33bdd3780bc9006522/contracts/Utils/Parser.sol
https://github.com/tokentrust/canvas/tree/3aafa6e3c42dc5509d2e9c33bdd3780bc9006522/contracts/Modules/View.sol
https://github.com/tokentrust/canvas/tree/3aafa6e3c42dc5509d2e9c33bdd3780bc9006522/contracts/Modules/URI.sol
https://github.com/tokentrust/canvas/tree/3aafa6e3c42dc5509d2e9c33bdd3780bc9006522/contracts/Modules/Minting.sol
https://github.com/tokentrust/canvas/tree/3aafa6e3c42dc5509d2e9c33bdd3780bc9006522/contracts/Modules/Funds.sol
https://github.com/tokentrust/canvas/tree/3aafa6e3c42dc5509d2e9c33bdd3780bc9006522/contracts/Modules/Customize.sol
https://github.com/tokentrust/canvas/tree/3aafa6e3c42dc5509d2e9c33bdd3780bc9006522/contracts/Modules/Create.sol
https://github.com/tokentrust/canvas/tree/3aafa6e3c42dc5509d2e9c33bdd3780bc9006522/contracts/Modules/Core.sol
https://github.com/tokentrust/canvas/tree/3aafa6e3c42dc5509d2e9c33bdd3780bc9006522/contracts/Collection/CanvasCreator.sol
https://github.com/tokentrust/canvas/tree/3aafa6e3c42dc5509d2e9c33bdd3780bc9006522/contracts/Collection/CanvasCollection.sol
https://github.com/tokentrust/canvas/tree/3aafa6e3c42dc5509d2e9c33bdd3780bc9006522/contracts/Chainlink/VRF.sol
https://github.com/tokentrust/canvas/tree/3aafa6e3c42dc5509d2e9c33bdd3780bc9006522/contracts/Chainlink/Keeper.sol

|. High Risk

2 Changes after sale enable theft of funds

4 High Risk

In Create.sol there is updateCanvas function that is used to update a canvas. You can update saleStart and

saleEnd as long as the sale has not started, or the sale ended, and it is not a refundable dutch. But changes to
saleStart and saleEnd after sale ends enables other changes to also be made. This enables stealing of funds.

2.1 Examples

2.1.1 Example 1

. User A creates a canvas and sets it up for a sale with saleStart set to current date, 7am and saleEnd current

date, 8am. Price is 10 ETH

. He buys an NFT that is part of the canvas for 10 ETH. He receives the 10 ETH back because he is buying from

himself.

. It is now 9am and the sale expired.
. He updates canvas and sets new saleStart to 10am and saleEnd to 11am.

. Now the saleStarted check is false. So user A can again execute a canvas update and set it as refundable dutch

with end price of 1 ETH.

. He buys another NFT through the refundable dutch for 1 ETH.

. He executes the claimbutchRefund for the first NFT (that he bought on a regular sale actually) and receives 9

ETH.

. He executes the payoutAction and receives canvas.totalQuantity *

ds.canvasSystem[canvasId].dutchEndPrice = 2 * 1 ETH =2 ETH.

. He waits a year to go by and executes the claimExpiredRefund.

. The amount that he can claim is calculated ds.canvasSystem[canvasId].revenue - (canvas.totalQuantity *

ds.canvasSystem[canvasId].dutchEndPrice)) - (ds.canvasSystem[canvasId].refundSum) / 2 = 11 ETH - (2
* 1 ETH) - 9 ETH / 2 = 4.5 ETH

2.1.2 Example 2

1.

User A creates a canvas and sets it up for a sale with saleStart setto current date, 7am and saleEnd current
date, 8am. Price is 1 ETH

2. He buys an NFT that is part of the canvas for 1 ETH. He receives the 1 ETH back because he is buying from

himself.

3. It is now 9am and the sale expired.

4. He updates canvas and sets new saleStart to 10am and saleEnd to 11am.

https://github.com/tokentrust/canvas/tree/3aafa6e3c42dc5509d2e9c33bdd3780bc9006522/contracts/Modules/Create.sol

5. Now the saleStarted check is false. So user A can again execute a canvas update and set it as refundable dutch
with end price of 10 ETH.

6. He buys another NFT through the refundable dutch for 10 ETH.

7. He executes the payoutAction and receives canvas.totalQuantity *
ds.canvasSystem[canvasId].dutchEndPrice = 2 * 10 ETH =20 ETH.

In first example user started with 10 ETH, bought his own NFT which means he received the 10 ETH back. Bought his
own NFT again for 1 ETH. Then he got paid 2 ETH from the contract. And in the end he claimed 4.5 ETH and ended up
with 15.5 ETH.

In second example user started with 10 ETH, bought his own NFT for 1 ETH which he received back. Then he bought
his own NFT for 10 ETH and got paid from the contract 20 ETH. So he ended up with 20 ETH. This is not taking into
account the protocol fee, which can be 0 - 30 %.

2.2 Recommendation

Either prevent changes to saleStart (and consequently type of sale and price) after there has already been
buying/selling done on that canvas, or prevent a canvas that was previously on a sale to be marked for refundable
dutch. The first option would be preferred, because changing saleStart has many side effects and that opens up
more possibilities for something to be vulnerable.

3 Claiming refunds on ongoing auctions make NFTs free

4 High Risk

In Funds.sol there is claimbDutchRefund function that is used to claim the refund from a refundable dutch auction.
Anyone who bought an NFT on this kind of auction, can execute this function any time. This can lead to people getting
free NFTs.

3.1 Example

1. User A creates a canvas and sets it up for a refundable dutch. Starting price is 10 ETH, ending price is 5 ETH and

total quantity is 10.
2. User B buys one NFT at the beginning of the auction and pays 10 ETH.
3. He can then immediately execute the claimDutchRefund function.

4. His refund will be calculated like this purchaseTracker.spend - (purchaseTracker.quantity *
(ds.canvasSystem[canvasId].dutchEndPrice)) = 18 ETH - (1 * 0) =10ETH

So the user just bought an NFT for free. The dutchEndPrice is 0, because it gets set only when the amount of NFTs
sold reaches the total quantity (in the above case 10). This example is not taking into account the protocol fee, which
can be 0-30 %.

3.2 Recommendation

Since the reason for above exploit is that auction has not ended, meaning
ds.canvasSystem[canvasId].dutchEndPrice is not set, you can simply check if it is zero and revert
(if(ds.canvasSystem[canvasId].dutchEndPrice == @) revert). Notice that you are only allowing claiming of funds
after amount of NFTs sold reaches the total quantity (that is when ds.canvasSystem[canvasId].dutchEndPrice is
set). This raises another issue that is described in Never ending refundable dutch. It includes a solution that takes into
account both issues, and it would be recommended to use it.

https://github.com/tokentrust/canvas/tree/3aafa6e3c42dc5509d2e9c33bdd3780bc9006522/contracts/Modules/Funds.sol

4 Canvas one can be refundable dutch

4 High Risk

In Create.sol there are createCanvas and updateCanvas functions through which canvas can be created/updated. In
both cases, someone can set a canvas to refundableDutch = true and isOne = true, although a refundable
auction does not make sense for 1/1 canvases. Also, this can lead to people getting free NFTs.

4.1 Example

1. User A creates a canvas and marks it refundableDutch and isOne. Priceis setto 10 ETH.

2. User B buys one NFT by executing mint function and pays 10 ETH. The sale is treated as a regular canvas 1/1
sale with the exception that ETH is not sent to the seller, but it is kept in the contract.

3. User B can then execute the claimbutchRefund function, because refundableDutch is true.

4. His refund will be calculated like this purchaseTracker.spend - (purchaseTracker.quantity *
(ds.canvasSystem[canvasId].dutchEndPrice)) = 10 ETH - (1 * @) =10 ETH

dutchEndPrice is 0 because when canvas isOne, it never gets set.

4.2 Recommendation

Add a check in createCanvas and updateCanvas that prevents the above scenario. You can add for example:

if(canvas.refundableDutch && canvas.isOne) revert.

https://github.com/tokentrust/canvas/tree/3aafa6e3c42dc5509d2e9c33bdd3780bc9006522/contracts/Modules/Create.sol

5 Reserve Auction can be bypassed

4 High Risk

In Minting.sol there is metaMint function that is used for gasless minting. It states that it can only be used for free
mints, as signature data does not handle transfer of funds from signer. However, that is not true. ERC20 tokens can be
transferred from the signer if he gives the Canvas contract approval. That by itself is not problematic, since there is
nothing wrong if minting with signature enables non-free mints also. The problem is that even if the canvas is on
reserve auction, it executes defaultMint instead of mintReserveAuction.

5.1 Example

1. User A creates a canvas and sets it up for a reserve auction.
2. User B signs a mint request for that canvas and calls metaMint, which executes defaultMint.
3. User B buys the canvas at salePrice, which is the "starting bid price" of the auction.

4. Because there was no bid made, user C can still make a bid on the auction. But he will not be able to mint,
because oneMinted is already true.

5.2 Recommendation

In metaMint add a check if reserveAuction is true. You can then disable reserve auctions by reverting, or you can
execute mintReserveAuction.

Schema.MintRequest memory mintRequest = getMintRequest(data);

if (!'canvasStorage().canvas[canvasId].reserveAuction) {
defaultMint(msgSender, canvasId, 0, mintRequest);

} else {
mintReserveAuction(msgSender, canvasId, mintRequest.selectedTraits);
emit OneMinted(msgSender, canvasId, mintRequest);

https://github.com/tokentrust/canvas/tree/3aafa6e3c42dc5509d2e9c33bdd3780bc9006522/contracts/Modules/Minting.sol

6 Reserve Auction mints wrong canvas

4 High Risk

In Minting.sol there is mintReserveAuction function that is used for minting a canvas that was on reserve auction. On
line 600 we can see that no mater if canvas is curated or not, the mint function is called on a contract with address
canvasOneAddress . However, in case that a canvas is curated, mint should be called on a contract with address
canvasOneCuratedAddress . The effect of this is not only that a token is minted in the wrong contract, but also wrong
mappings of canvases to their traits, wrong ds.canvasOne and ds.canvasOneCurated mappings of token ID to
canvas ID and wrong counters of canvasOne and canvasOneCurated.

586 uint256 tokenId;
587 if (ds.canvasSystem[canvasId].isCurated) {

588 ds.canvasOneCurated[ds.contractInfo.canvasOneCuratedCounter] = canvasId;

589 tokenId = ds.contractInfo.canvasOneCuratedCounter;

590 ds.customization[ds.contractInfo.canvasOneCuratedAddress][tokenId].selectedTraits =
591 selectedTraits;

592 unchecked { ds.contractInfo.canvasOneCuratedCounter++; }

593 } else {

594 ds.canvasOne[ds.contractInfo.canvasOneCounter] = canvasId;

595 tokenId = ds.contractInfo.canvasOneCounter;

596 ds.customization[ds.contractInfo.canvasOneAddress]|[tokenId].selectedTraits =
597 selectedTraits;

598 unchecked { ds.contractInfo.canvasOneCounter++; }

599 }

600

ds.canvasSystem[canvasId].oneMinted = true;
INFT(ds.contractInfo.canvasOneAddress).mint(msgSender, 1);

6.1 Recommendation

Change the code in a way that calls mint on canvasOneCuratedAddress when canvas is curated and
canvasOneAddress when it is not.

586 uint256 tokenId;
587 address canvasAddress;
588 if (ds.canvasSystem[canvasId].isCurated) {

589 tokenId = ++ds.contractInfo.canvasOneCuratedCounter;

590 canvasAddress = ds.contractInfo.canvasOneCuratedAddress;
591 ds.canvasOneCurated[tokenId] = canvasId;

592 } else {

593 tokenId = ++ds.contractInfo.canvasOneCounter;

594 canvasAddress = ds.contractInfo.canvasOneAddress;

595 ds.canvasOne|[tokenId] = canvasId;

596 }

597

598 ds.customization[canvasAddress]|[tokenId].selectedTraits = selectedTraits;
599 ds.canvasSystem[canvasId].oneMinted = true;
600 INFT(canvasAddress).mint(msgSender, 1);

https://github.com/tokentrust/canvas/tree/3aafa6e3c42dc5509d2e9c33bdd3780bc9006522/contracts/Modules/Minting.sol

*This example also includes fixes regarding some gas inefficiencies and a bug from Wrong token ID in
mintReserveAuction.

/ Wrong token ID in mintReserveAuction

4 High Risk

In Minting.sol there is mintReserveAuction function that is used for minting a canvas that was on reserve auction. On
lines 588 - 591 and 593 - 596 we can see that the tokenId is assigned the value of count of token IDs and only after
that, the count of token IDs is incremented. This would be okay if token IDs would start at 0. However, they start at 1,
which can be seen in CanvasCollection.sol. This means that the traits and canvas ID will not match the token. It will
also override the traits and canvas ID of the last minted token.

586 uint256 tokenId;
587 if (ds.canvasSystem[canvasId].isCurated) {

588 ds.canvasOneCurated[ds.contractInfo.canvasOneCuratedCounter] = canvasId;

589 tokenId = ds.contractInfo.canvasOneCuratedCounter;

590 ds.customization[ds.contractInfo.canvasOneCuratedAddress][tokenId].selectedTraits =
591 selectedTraits;

592 unchecked { ds.contractInfo.canvasOneCuratedCounter++; }

593 } else {

594 ds.canvasOne[ds.contractInfo.canvasOneCounter] = canvasId;

595 tokenId = ds.contractInfo.canvasOneCounter;

596 ds.customization[ds.contractInfo.canvasOneAddress]|[tokenId].selectedTraits =

597 selectedTraits;
unchecked { ds.contractInfo.canvasOneCounter++; }

}

7.1 Recommendation

Change the code so that the token ID is equal to last token ID + 1. The solution was already included in ReserveAuction
mints wrong canvas.

https://github.com/tokentrust/canvas/tree/3aafa6e3c42dc5509d2e9c33bdd3780bc9006522/contracts/Modules/Minting.sol
https://github.com/tokentrust/canvas/tree/3aafa6e3c42dc5509d2e9c33bdd3780bc9006522/contracts/Collection/CanvasCollection.sol

8 Refundable dutch with zero dutchEndTime enables theft of
funds

| 4 High Risk

In Create.sol there are createCanvas and updateCanvas functions through which canvas can be created/updated. In
both cases, someone can set a canvas to be refundable dutch, even though it is not a dutch auction
(refundableDutch = true and dutchEndTime = 0). This enables stealing of funds from the contract. Canvas creator
has the ability to change saleToken as stated in Change of saleToken can result in wrong revenue. So he can use this
in combination with payoutAuction to steal any token from the contract.

8.1 Example
1. User A creates a canvas and sets refundableDutch = true and dutchEndTime = @. The price is 1 USDT and
total quantity is 10.
2. He buys 10 NFTs and pays 10 USDT.
3. He then executes a canvas update and sets saleToken to ETH, which he can because dutchEndTime is 0.
4. He can then execute the payoutAuction function.

5. His revenue will be calculated like this

canvas.totalQuantity.mul(ds.canvasSystem[canvasId].dutchEndPrice) = 10 * 1 =10

6. He will receive 10 ETH

He paid 10 USDT and received 10 ETH (which is at the time worth more than 1000x that).

8.2 Recommendation

Consider adding a check in createCanvas and updateCanvas that prevents the above scenario. You can add for
example: if(canvas.refundableDutch && canvas.dutchEndTime == @) revert.

https://github.com/tokentrust/canvas/tree/3aafa6e3c42dc5509d2e9c33bdd3780bc9006522/contracts/Modules/Create.sol

II. Medium Risk

9 Change of saleToken can result in wrong revenue

Medium Risk

In Create.sol there is updateCanvas function that is used to update a canvas. You can also update saleToken as long
as it is not on reserve auction or dutch auction. If it is on a regular sale it can be updated. In case someone has already
purchased an NFT, which is part of a canvas, and then saleToken is changed, the revenue will be wrong. Because
there is no way to know how much was sold for which saleToken.

9.1 Example

1. User A creates a canvas and sets it up for a regular sale. saleToken is ETH (address(0)) and price is 1e18.
. User B mints one NFT that is part of that canvas and pays 1 ETH.
. Revenue for that canvas updates to ds.canvasSystem[canvasId].revenue += totalPrice ->1e18.

. User A executes a canvas update. He sets saleToken to USDT and price to 100e6 (USDT has 6 decimals).

aa b~ W N

. User C mints one NFT that is part of that canvas and pays 100 USDT.

(o))

. Revenue for that canvas updates to ds.canvasSystem[canvasId].revenue += totalPrice ->1e18 + 100e6 =
10000000001e8.

Now the revenue is 10000000001e8, but that does not represent how much ETH was earned or how much USDT was
earned.

9.2 Recommendation

Prevent a change of saleToken if any kind of sale is started. You can add this line: if(saleStarted &&

canvas.saleToken != update.saleToken) revert

https://github.com/tokentrust/canvas/tree/3aafa6e3c42dc5509d2e9c33bdd3780bc9006522/contracts/Modules/Create.sol

10 Collection to canvas mapping does not work for canvas
one

Medium Risk

There are multiple instances where canvas ID is being read from collectionToCanvas mapping. We can see that the
only time this relation is set is in approveCanvas function in Core.sol and that it is set only for canvases that don't
have isOne = true. That means, that for 1/1 canvases, ID must be retrieved another way. This makes sense, because
all the 1/1 canvases are part of the same collection/contract. But in URI.sol there are 3 instances where that is
ignored. This can result in wrong traits being included in the tokenURI for 1/1 canvases.

1. Line 87 - getRefUri
2.Line 244 - getSelectedTraits

3.Line 411 - getTraitsAndParams

This is how canvas ID is retrieved in the above cases:
uint256 canvasId = ds.collectionToCanvas[collectionAddress];
This is how canvas ID is retrieved the right way in tokenURI function:

uint256 canvasId;
if (collectionAddress == ds.contractInfo.canvasOneAddress) canvasId = ds.canvasOne[tokenId];
else if (collectionAddress == ds.contractInfo.canvasOneCuratedAddress) canvasId =

ds.canvasOneCurated| tokenId];
else canvasId = ds.collectionToCanvas[collectionAddress];

10.1T Recommendation

Since you are already getting canvas ID the right way in tokenURI function and all the other functions are only called
within it, just pass the canvas ID as an argument. This way the right ID will be used and also gas consumption will be
lower, since there will be less reading from storage.

https://github.com/tokentrust/canvas/tree/3aafa6e3c42dc5509d2e9c33bdd3780bc9006522/contracts/Modules/Core.sol
https://github.com/tokentrust/canvas/tree/3aafa6e3c42dc5509d2e9c33bdd3780bc9006522/contracts/Modules/Core.sol

11 Canvas can have unlimited supply even in case of dutch
auction

A\ Medium Risk

In Create.sol there are createCanvas and updateCanvas functions through which canvas can be created/updated. In

both cases, someone can set a canvas to have totalQuantity = @ (which is considered unlimited) and be a dutch

auction. Which means that the number of minted tokens will never equal the totalQuantity and therefore the line
539 in Minting.sol will never be executed. This means that canvasSystem[canvasId].dutchEndPrice will not be
saved, and the seller will not be able to withdraw the funds if it is a refundable dutch. It also does not make sense to
have a dutch auction that has unlimited supply. Since all the buyers can wait for the price to reach the end price
without the risk of not getting a mint, which is the point of a dutch auction.

535
536
537
538
539
540

if (ds.canvas[canvasId].totalQuantity > 0 &&
tokenIdCounter.add(quantity) > ds.canvas[canvasId].totalQuantity)

revert SoldOut();

else if (tokenIdCounter.add(quantity) == ds.canvas[canvasId].totalQuantity) {
ds.canvasSystem[canvasId].dutchEndPrice = price;

}

11.7 Recommendation

Add a check that prevents totalQuantity to be @ in case of a dutch auction. For example:

if(canvas.totalQuantity == @ && canvas.dutchEndTime != B) revert.

https://github.com/tokentrust/canvas/tree/3aafa6e3c42dc5509d2e9c33bdd3780bc9006522/contracts/Modules/Create.sol
https://github.com/tokentrust/canvas/tree/3aafa6e3c42dc5509d2e9c33bdd3780bc9006522/contracts/Modules/Create.sol

12 VRF subscription cannot be cancelled

A\, Medium Risk

In VRF.sol there is a cancelSubscription function. It is used to cancel a subscription of a canvas to VRF. But the code
has a bug that prevents the actual subscription from being canceled. The mapping
canvasIdToSubscription[canvasId] is cleared first and after that it calls cancelSubscription on vrfCoordinator.
In the parameters of cancelSubscription it forwards the canvasIdToSubscription[canvasId], which is already
cleared and therefore does not match the subscription that should be canceled.

function cancelSubscription(uint256 canvasId) external {
address admin = ICanvas(canvasAddress).getVRFHelper(canvasId).admin;
if (msg.sender != admin) revert NoPermission();

canvasIdToSubscriptionId[canvasId] = ©;
vrfCoordinator.cancelSubscription(canvasIdToSubscriptionId[canvasId], admin);
ICanvas(canvasAddress) .setVrfSubscription(canvasId, 0);

12.1 Recommendation

Either cache the subscription ID before deleting it from the mapping and use the cached ID in
vrfCoordinator.cancelSubscription, or execute the call first and delete the subscription ID after.

function cancelSubscription(uint256 canvasId) external {
address admin = ICanvas(canvasAddress).getVRFHelper(canvasId).admin;
if (msg.sender != admin) revert NoPermission();

vrfCoordinator.cancelSubscription(canvasIdToSubscriptionId[canvasId], admin);
delete canvasIdToSubscriptionId[canvasId];

ICanvas(canvasAddress).setVrfSubscription(canvasId, 0);

https://github.com/tokentrust/canvas/tree/3aafa6e3c42dc5509d2e9c33bdd3780bc9006522/contracts/Chainlink/VRF.sol

13 Never ending refundable dutch

Medium Risk

A canvas can be put on refundable dutch auction. When setting up an auction, the seller defines totalQuantity. The
auction is considered to be over when the amount of tokens minted matches the canvas.totalQuantity . However,
that value can be set so high (intentionally or unintentionally) that the auction never ends. Or there simply is not
enough interested buyers. Since the auction is considered as ongoing, funds cannot be withdrawn from contract.

13.7T Recommendation

Allow withdrawing even if totalQuantity is not reached, as long as dutchEndTime is. In that case you can be sure
that the end price will equal canvas.dutchEndPrice . So you can take canvas.dutchEndPrice instead of
ds.canvasSystem[canvasId].dutchEndPrice (which is set when last token is minted) to calculate how much was
earned so far and how much can be refunded. Notice that in such case, it would also be important to track how much
was paid out so far. It would be recommended to limit how long an auction can last, otherwise if
canvas.dutchEndTime is set too far in the future, this solution will not help.

In payoutAction you can do it like this:

if (canvas.refundableDutch) {
uint endPrice = ds.canvasSystem[canvasId].dutchEndPrice
if(endPrice == 0) {
if(canvas.dutchEndTime > block.timestamp) revert SaleOngoing();
endPrice = canvas.dutchEndPrice;

uint tokenIdCounter = ds.canvasSystem|[canvasId].tokenIdCounter;
revenue = (tokenIdCounter - ds.canvasSystem[canvasId].payoutCounter) * endPrice;

ds.canvasSystem[canvasId].payoutCounter = tokenIdCounter;

if(tokenIdCounter == canvas.totalQuantity) {
ds.canvasSystem[canvasId].auctionPayout = true;

}

Notice that ds.canvasSystem[canvasId].payoutCounter is added.

In claimRefundableDutch you can do it like this:

uint endPrice = ds.canvasSystem[canvasId].dutchEndPrice

if(endPrice == 0) {
if(canvas.dutchEndTime > block.timestamp) revert SaleOngoing();
endPrice = canvas.dutchEndPrice;

}

uint256 refund = purchaseTracker.spend - (purchaseTracker.quantity * endPrice);

I1l. Low Risk

14 Lack of selectedTraits validation in mintReserveAuction

© LowRisk

In Minting.sol there is mintReserveAuction function used to mint a canvas that was on reserve auction. It receives an
uint array selectedTraits and saves it to storage for the canvas that is being minted. But the traits validity is never
checked like it is in defaultMint . There can be more traits than are defined for the selected canvas. Also, the traits
values can be out of range.

14.1 Recommendation

In mintReserveAuction check that selected traits match the traits definition for selected canvas, like you do in
defaultMint with handleTraits function.

https://github.com/tokentrust/canvas/tree/3aafa6e3c42dc5509d2e9c33bdd3780bc9006522/contracts/Modules/Minting.sol

15 Lack of validation for time settings

© LowRisk

In Create.sol there are createCanvas and updateCanvas functions through which canvas can be created/updated. In
both cases, there is a lack of validation for time related settings.

e dutchEndTime can be set to less than current timestamp and less than saleStart, which will result in price always

being the same.
o Both saleStart and saleEnd can be less than current timestamp.

e Both saleStart and saleEnd can be as far in the future as possible.

15.1 Recommendation

Add a check in createCanvas and updateCanvas that prevents the above and limits the duration of sale. Consider
using constants to represent minimum and maximum duration for auction/sale.

if(canvas.dutchEndTime != @ && (canvas.dutchEndTime - canvas.saleStart > MAX_DUTCH_DURATION ||
canvas.dutchEndTime - canvas.saleStart < MIN_DUTCH_DURATION)) revert

if(canvas.saleStart != 0 && (canvas.saleStart < block.timestamp || canvas.saleEnd -
canvas.saleStart > MAX_SALE_DURATION || canvas.saleEnd - canvas.saleStart < MIN_SALE_DURATION))
revert

https://github.com/tokentrust/canvas/tree/3aafa6e3c42dc5509d2e9c33bdd3780bc9006522/contracts/Modules/Create.sol

16 Canvas that is not one can have reserveAuction flag

© LowRisk

Only canvases that are 1/1 can be put on reserve auction. However, in Create.sol there is a createCanvas function
that receives a Schema.Canvas struct. This struct is then saved to storage as a new canvas. Therefore, someone can
create a canvas with isOne marked false and reserveAuction marked true. This canvas will be unusable,
because you can't make a bid on it (it reverts because it is not 1/1), and you can't buy it either.*

There is also another way to achieve such setup. In updateCanvas function, when changing reserveAuction
property, it is checked if isOne is false. In that case it does not allow change of reserveAuction to true. But the
opposite scenario is never considered. Canvas can have reserveAuction previously marked true, and then change
isOne to false inthe next update.

16.1T Recommendation

Add a check in createCanvas if reserveAuction is true and isOne is false and revert. You can add this line for

example: if(canvas.reserveAuction && !canvas.isOne) revert InvalidSetup(); .

In updateCanvas you can check if reserveAuction is true where updating isOne property to false and revert like
in the example bellow. It would be even better to place all revert cases at the top of the function. That way more gas
would be returned when reverting.

157 if (canvas.isOne != update.isOne) {

158 if(!update.isOne && canvas.reserveAuction) revert InvalidSetup();
159 canvas.isOne = update.isOne;

160 }

*You actually can buy such canvas through metaMint, because of an issue that is described in ReserveAuction can be
bypassed

https://github.com/tokentrust/canvas/tree/3aafa6e3c42dc5509d2e9c33bdd3780bc9006522/contracts/Modules/Create.sol

17 Canvas can be a reserve auction and a dutch auction

© LowRisk

In Create.sol there are createCanvas and updateCanvas functions through which canvas can be created/updated. In
both cases, someone can set a canvas to have both a reserve auction, dutch auction and refundable dutch, although
there is no support for this kind of setup in the rest of the code. Such canvas will be treated as reserve auction.

17.1 Recommendation

Add a check that prevents reserveAuction to be true atthe same time that refundableDutch is true or
dutchEndTime is set.

https://github.com/tokentrust/canvas/tree/3aafa6e3c42dc5509d2e9c33bdd3780bc9006522/contracts/Modules/Create.sol

18 externalUrlSlash cannot be updated

© LowRisk

In Canvas struct, there is a boolean externalUrlSlash. The value can be set when canvas is created, but there is no
way to change it. Maybe this is intended, but based on that all other values can be updated, we assume that it should

also be possible to update externalUrlSlash.
18.1 Recommendation

Consider adding a way to update the externalUrlSlash.You can add canvas.externalUrlSlash =
update.externalUrlSlash; to the end of updateCanvas function.

19 There can be more purchaseldentifiers than tokens
minted

© LowRisk

Whenever someone is minting through the defaultMint function, they can specify purchaseIdentifiers whichis a
list of custom identifiers by minter. On lines 553 - 556 in Minting.sol we can see that each of these identifiers is
assigned to one of the tokens that he is minting. However, the minter can specify more identifiers than the amount of
tokens he is minting. This means that he can assign an identifier to a token that is not yet minted.

for (uint256 i = @; i < mintRequest.purchaseIdentifiers.length;) {
ds.customization[collectionAddress][tokenId + i].purchaseldentifier =
mintRequest.purchaseIdentifiers[i];
unchecked { i++; }

}

19.1 Recommendation

Consider adding a check that the length of mintRequest.purchaseIdentifiers matches the mintRequest.quantity,
otherwise revert. This way minter can specify only identifiers for the tokens he is minting.

https://github.com/tokentrust/canvas/tree/3aafa6e3c42dc5509d2e9c33bdd3780bc9006522/contracts/Modules/Minting.sol

20 Same trait can appear twice in URI

© LowRisk

In URI.sol, there is getTraitsAndParams function that combines selected traits with static or random traits. In case
that some traits are static and some are selected, getStaticTraits will be executed first to get the static traits and
getSelectedTraits will be executed after to get the selected traits and combine them. In getSelectedTraits a trait
will be assigned only if it is selectable and the selected value is not zero (meaning trait is not selected). In
getStaticTraits all possible traits will be assigned. No matter if they are selectable or not. This results in the
traits that are selected appearing twice. Once with the selected value and once with the default (first in array) value.

20.1 Recommendation

Add an if statement in getStaticTraits function, that checks if trait is selectable and only add the ones that aren't
to encodedTraits string. If the intended use case of the selected trait zero value is that it is not displayed, then also

add a check if the selected value is zero.

for (uint256 i = @; i < canvasTraits.length;) {
if (!canvasTraits[i].selectable) {
encodedTraits = string(abi.encodePacked(
encodedTraits,
"{"trait_type":""',
canvasTraits[i].trait,

", "value":"",
canvasTraits[i].values[@0],
"}I I)

)§
}

unchecked { i++; }

https://github.com/tokentrust/canvas/tree/3aafa6e3c42dc5509d2e9c33bdd3780bc9006522/contracts/Modules/URI.sol

271 Partner must send more ETH than needed

© LowRisk

Each canvas can have "partners". These are addresses that have a discount on tokens that they purchase. In

Minting.sol there is handleFunds function that handles the distribution of funds for a given sale. We can see on line
463, that if the buyer is a partner and the sale is in ETH, he is returned the amount of ETH that he is discounted for.

This means that if a partner has 30% discount, he must send 1 ETH when buying even if it costs him only 0.7 ETH. He

will receive the 0.3 ETH back, but it can be inconvenient.

460
461
462
463
464
465
466
467
468
469

if (canvas.saleToken == address(8)) {

if (!canvas.refundableDutch) {
if (protocolFee > 0) sendETH(ds.contractInfo.protocolFeeRecipient, protocolFee);
if (partnerFee > 0) sendETH(msgSender, partnerFee);
sendETH(ds.canvas[canvasId].feeRecipient, remainder);

}

uint256 excessAmount = ethValue.sub(totalPrice);
if (excessAmount > 0) sendETH(msgSender, excessAmount);

27.1 Recommendation

Allow partners to send the amount of ETH needed for purchase without requiring the full price. Only send back ETH

that exceeds the required amount.

460
461
462
463
464
465
466
467
468
469
470
471

if (canvas.saleToken == address(0)) {

uint256 excessAmount = ethValue - protocolFee - remainder;

if (!canvas.refundableDutch) {
if (protocolFee > 0) sendETH(ds.contractInfo.protocolFeeRecipient, protocolFee);
sendETH(ds.canvas[canvasId].feeRecipient, remainder);

} else {
excessAmount -= partnerFee;

}

if (excessAmount > 0) sendETH(msgSender, excessAmount);

https://github.com/tokentrust/canvas/tree/3aafa6e3c42dc5509d2e9c33bdd3780bc9006522/contracts/Modules/Minting.sol

22 Lack of subscription validation in VRF

© LowRisk

In VRF.sol there are multiple functions that get a subscription ID from the canvasIdToSubscription mapping and
execute some actions related to that subscription. But they lack validating that the subscription for selected canvas
actually exists. These functions are: cancelSubscription, onTokenTransfer, resetVRF and requestVRF

22.1 Recommendation

Consider adding a check that canvasIdToSubscription isnotequalto 6. if(canvasIdToSubscription[canvasId]

== 0) revert.

https://github.com/tokentrust/canvas/tree/3aafa6e3c42dc5509d2e9c33bdd3780bc9006522/contracts/Chainlink/VRF.sol

23 updatePurchaselds can overwrite purchaseldentifiers

© LowRisk

Buyers can set a purchase ID for each token when they buy it. But these identifiers can be overwritten by canvas
admin. In Customize.sol there is updatePurchaseIds function that receives an array of token IDs and purchase IDs.
These purchase IDs then get assigned to tokens given in the token IDs array. This allows the canvas admin to change
purchase IDs that were previously set by buyers. This could break some external functionality that would be dependent
on purchase IDs. Especially because there is no event emitted that would signal a change. Furthermore, there is no

validation, that given token IDs actually exist.

Similar problem exists in updateChipIds function. But we assume that this function is part of PBT protocol, which is
not implemented yet, and therefore its functionality is not complete. It is important to notice that in this function there
is no check that each chip belongs to exactly one address and vice versa.

23.1 Recommendation

You can add an event to signal a change in purchase IDs and validate that given token IDs exist.

https://github.com/tokentrust/canvas/tree/3aafa6e3c42dc5509d2e9c33bdd3780bc9006522/contracts/Modules/Customize.sol

24 Storage changes after external calls

© LowRisk

There are multiple instances where storage is updated after external calls are made. This opens up possibility for
reentrancy related exploits. These functions are wrapped in nonReentrant modifier which fixes that to some degree.
However, the modifier prevents only the functions that use it from being entered, where other functions could still be
entered (updateCanvas for example). Although we did not notice an opportunity to exploit that, it would still be
recommended to follow the "check effects interactions" pattern to make the code more secure.

241 Recommendation

Make storage changes before executing external calls.
Minting.sol

» Move line 484 before the transfer of ETH (L459 for example).

e In defaultMint do fulfillMint first and handleFunds second.

Funds.sol

» Move line 104 before the transfer of ETH (L81 for example).

» Move line 173 before the transfer of ETH (L154 for example).
» Move line 228 before the transfer of ETH (L209 for example).
» Move line 286 before the transfer of ETH (L264 for example).

https://github.com/tokentrust/canvas/tree/3aafa6e3c42dc5509d2e9c33bdd3780bc9006522/contracts/Modules/Minting.sol
https://github.com/tokentrust/canvas/tree/3aafa6e3c42dc5509d2e9c33bdd3780bc9006522/contracts/Modules/Funds.sol

25 Looping through big arrays can cause failure

© LowRisk

There is a lot of looping through arrays in this code base. Since there are no bounds to sizes of these arrays, they can
grow indefinitely. This can cause the functions that are looping through them to become too expensive or even fail.

Functions that could break if arrays grow too large:
Customize.sol

e setTokenRefs

Minting.sol

e processMintPass
e handleTraits

e getPrice

URl.sol

getRefUri

e getStaticTraits

e getSelectedTraits
e getRandomTraits

e getTraitsAndParams

25.1 Recommendation

Do extensive tests on all the functions that are looping through arrays and test the limits.

https://github.com/tokentrust/canvas/tree/3aafa6e3c42dc5509d2e9c33bdd3780bc9006522/contracts/Chainlink/Customize.sol
https://github.com/tokentrust/canvas/tree/3aafa6e3c42dc5509d2e9c33bdd3780bc9006522/contracts/Chainlink/Minting.sol
https://github.com/tokentrust/canvas/tree/3aafa6e3c42dc5509d2e9c33bdd3780bc9006522/contracts/Chainlink/URI.sol

26 Loops do not break when possible

© LowRisk

Looping through arrays can be expensive, that is why it is important to break the loop as soon as possible. There are
multiple cases in the code base, where loops go through whole array even though it already has the information that it
needs.

26.1 Examples

26.1.1 Example 1

verifyTraits in Create.sol goes through whole canvasTraits array, although the loop could be exited whenever
valid is setto false.

278 bool valid = true;
279 for (uint256 i = @; i < canvasTraits.length;) {

280 if (canvasTraits[i].traitsChance > 10_000) valid = false;

281 if (canvasTraits[i].values.length != canvasTraits[i].chancesOrQuantity.length) valid =
282 false;

283 unchecked { i++; }

284 }

285

if (!valid) revert InvalidTraits();

26.1.2 Solution 1

278 uint256 len = canvasTraits.length;
279 for (uint256 i = 0; i < len;) {

280 if(canvasTraits[i].traitsChance > 10_000 || canvasTraits[i].values.length !=
281 canvasTraits[i].chancesOrQuantity.length)
282 revert InvalidTraits();
283 unchecked { i++; }
}

26.1.3 Example 2

setTokenRefs in Customize.sol goes through whole ds.allowedRefs[canvasId] array, although the loop could be
exited when allowed is setto true.

110 bool allowed = false;
111 for (uint256 j = 0; j < ds.allowedRefs[canvasId].length;) {

112 if (ds.allowedRefs[canvasId][j] == refs[i].tokenAddress) allowed = true;
113 unchecked { j++; }
114 }

115 if ('allowed) revert InvalidReference();

https://github.com/tokentrust/canvas/tree/3aafa6e3c42dc5509d2e9c33bdd3780bc9006522/contracts/Modules/Create.sol
https://github.com/tokentrust/canvas/tree/3aafa6e3c42dc5509d2e9c33bdd3780bc9006522/contracts/Modules/Customize.sol

26.1.4 Solution 2

110 bool allowed = false;
111 uint256 len = ds.allowedRefs[canvasId].length;
112 for (uint256 j = 0; j < len) {

113 if (ds.allowedRefs[canvasId][j] == refs[i].tokenAddress) {
114 allowed = true;

115 break;

116 }

117 unchecked { j++; }

118 }

119 if ('allowed) revert InvalidReference();

277 Poor sequence of actions in updateCanvas

© LowRisk

In Create.sol the updateCanvas function is used to update a canvas. When updating, it stores isImmutable property
first, then it reads it from storage to check if it is immutable, and only if it is not, other properties can be updated. This
can cause you to lock wrongly configured canvas.

27.1 Example

1. User A has a canvas with feeBps equal to 100 .

2. He wants to change feeBps to 200 and lock the canvas.

3. He executes updateCanvas with feeBps = 200 and isImmutable = true.

4. The isImmutable property gets stored first, therefore the canvas is now immutable.

5. Because canvas is immutable, feeBps is not saved.

User A locked his canvas, but feeBps is still 160. He can't change feeBps, unless the DAO unlocks his canvas.

27.2 Recommendation

Move part of the code, that changes canvas to immutable, to the end of the function. This way you are locking the
canvas after making all the other changes.

https://github.com/tokentrust/canvas/tree/3aafa6e3c42dc5509d2e9c33bdd3780bc9006522/contracts/Modules/Create.sol

V. Informational

28 Same validation is being executed in Keeper and VRF

/" Informational

In Keeper.sol there is a performUpkeep function, which makes a call to requestVRF function that is in VRF.sol. Both of
these functions perform the same check, which can be seenin performUpkeep on lines 34 - 40, and in requestVRF on
lines 102 - 107. There is no need to perform these checks in both of the functions, because of their dependence on
each other. If requestVRF fails, performUpkeep fails too.

32 function performUpkeep(bytes calldata performData) external override {

33 uint256 canvasId = abi.decode(performData, (uint256));

34 Schema.VRFHelper memory info = ICanvas(canvasAddress).getVRFHelper(canvasId);
815

36 if (

37 linfo.vrfPending &&

38 info.tokenIdCounter - info.randomizedTraitsCounter > 0 &&

39 info.vrfLastRunTimestamp + (info.vrfMinuteInterval * 60) < block.timestamp
40) A

41 CanvasVRF (vrfAddress) .requestVRF(canvasId) ;

42 }

43 }

101 function requestVRF(uint256 canvasId) external {

102 Schema.VRFHelper memory info = ICanvas(canvasAddress).getVRFHelper(canvasId);
103
104 if (info.vrfPending ||
105 info.tokenIdCounter - info.randomizedTraitsCounter == 0 ||
106 info.vrfLastRunTimestamp + (info.vrfMinuteInterval * 60) > block.timestamp)
107 revert VRFNotNeeded() ;
108
109 uint256 requestId = vrfCoordinator.requestRandomWords(keyHash,
110 canvasIdToSubscriptionId[canvasId], 7, 300000, 1);
111
112 vrfToCanvasId|[requestId] = canvasId;
113 ICanvas(canvasAddress).setVrfResult(canvasId, 0, "requested");
}

28.1 Recommendation

Remove the validation from performUpkeep function and just execute the callto requestVRF.

32 function performUpkeep(bytes calldata performData) external override {

33 uint256 canvasId = abi.decode(performData, (uint256));
34 CanvasVRF(vrfAddress).requestVRF(canvasId) ;
85 }

Or if you do not want performUpkeep to revert you can do it like this:

32 function performUpkeep(bytes calldata performData) external override {
33 uint256 canvasId = abi.decode(performbData, (uint256));

https://github.com/tokentrust/canvas/tree/3aafa6e3c42dc5509d2e9c33bdd3780bc9006522/contracts/Chainlink/Keeper.sol
https://github.com/tokentrust/canvas/tree/3aafa6e3c42dc5509d2e9c33bdd3780bc9006522/contracts/Chainlink/VRF.sol

34
39
36
37
38

vrfAddress.call(
abi.encodeWithSignature(('requestVRF(uint256)")
canvasId

)

29 Events don't describe changes clearly

/" Informational

Events are used to communicate changes in state to front ends. In this code base we can see a lot of events that do
not give clear information on what has changed. In such cases, the front end or a back end service that keeps
database up to date, has to figure out what has changed using other methods that make the process more complex.

29.1 Example

Event NewCurator() is emitted when curator is changed. But it does not give information on whom the new curator is.
It would be good to add the new curator's address to the event.

There are more events like this one that do not give information on what has changed:

ContractUpdate() - no information on what was updated.

e NewDao() - no information on what the new dao address is.

e NewAdmin() - no information on what the new admin address is.

e CanvasCreate(uint256 indexed canvasId) - no information on what kind of canvas was created.
e CanvasUpdate(uint256 indexed canvasId) - no information on what was updated.

e CanvasAsset(uint256 indexed canvasId) - no information on what the new asset version is, new thumbnailUri
and baseUri.

e CanvasCreators(uint256 indexed canvasId) - no information on new creators addresses.
e CanvasRefs(uint256 indexed canvasId) - noinformation on new refs addresses.

e OneMinted(address indexed msgSender, uint256 indexed canvasId, Schema.MintRequest indexed quantity,

uint256[] selectedTraits) - no information about the cost.

e ApproveCanvas(uint256 indexed canvasId) -is used when curating and approving. No information on whether it
is approved or curated.

29.2 Recommendation

Add information to events, that would enable a back end service to reconstruct the contracts state just by looking at
events. In some cases, you can make separate events to represent different changes. For example in
createCanvasOne function you could change ContractUpdate eventto something like CanvasOneCreated(address

canvasOne, address canvasOneCurated) .

30 Logging timestamp in events is redundant

/" Informational

Event AuctionBid includes a parameter for timestamp, which represents the time when the bid was made and event
was emitted. However, for each event it is known part of which block it is, and each block has a known timestamp.
Therefore, it is not needed to have a timestamp also included in the event parameters. But this might be intended by

developers for convenience or similar reasons.

30.1 Recommendation

Consider removing the timestamp from AuctionBid event.

371 Event definitions in Canvas are redundant

/" Informational

There are multiple events defined in Canvas.sol, but none of them are emitted in this contract. These are the same
events that are emitted in libraries, which are called from this contract. But the libraries also include definitions of the
events they emit, and they do not require the contract executing the call (canvas.sol) to have them too. Therefore, the
definitions in Canvas.sol are unnecessary.

371.1 Recommendation

Remove events from Canvas.sol.

https://github.com/tokentrust/canvas/tree/3aafa6e3c42dc5509d2e9c33bdd3780bc9006522/contracts/Canvas.sol
https://github.com/tokentrust/canvas/tree/3aafa6e3c42dc5509d2e9c33bdd3780bc9006522/contracts/Canvas.sol

32 Storing and reading contract address uses more gas

/" Informational

The contract address is stored to ds.contractInfo.canvasStorage. It is then read from storage multiple times in
libraries. Reading from storage costs 2100 gas, whereas using address(this) uses just 2 gas. It is stated, that the
address is stored, so libraries can use it. Since calls to libraries are essentially executed as delegateCall, using
address(this) ina library contract will give the address of the contract which is executing the code. That address is
the same as ds.contractInfo.canvasStorage.

32.1 Recommendation

Remove the ds.contractInfo.canvasStorage state variable and use address(this) where you need the contract
address instead.

33 Unused state variables

/" Informational

There are multiple state variables that are never used within the contracts. Some of these might be stored and read
from the contract, but not actually used in any of the functionality. This might be intentional, but we want to point them
out anyway.

e ds.contractInfo.linkTokenAddress

e ds.contractInfo.keeperRegistrarAddress

e ds.contractInfo.keeperAddress

e ds.contractInfo.canvasOpenCounter

e ds.canvas[id].isPBT

e ds.customization[contractAddress][tokenId].chipIdentifier

e ds.chipToTokenId

33.1T Recommendation

Remove the state variables that are not needed.

34 Redundant usage of msg.sender and msg.value

/" Informational

In Canvas.sol there are multiple cases where libraries are called with msg.sender and msg.value forwarded as
arguments. Since a call to a library is a delegateCall, there is no need for that. Reading msg.sender or msg.value
within the library will give the same result as reading it in the contract that is calling the library.

34.1 Example

Code in Canvas.sol

function mint(
uint256 canvaslId,
bytes calldata data
) external payable {

Minting.mint(
msg.sender,
msg.value,
canvasId,
data

Code in Minting.sol

function mint(
address msgSender,
uint256 ethValue,
uint256 canvaslId,
bytes calldata data
) external nonReentrant {
Schema.Storage storage ds = canvasStorage();
Schema.Canvas storage canvas = ds.canvas[canvasId];

Schema.MintRequest memory mintRequest = getMintRequest(data);

if (!canvas.reserveAuction) defaultMint(msgSender, canvasId, ethValue, mintRequest);
else {
mintReserveAuction(msgSender, canvasId, mintRequest.selectedTraits);
emit OneMinted(msgSender, canvasId, mintRequest);
}
}

34.2 Recommendation

Remove msg.sender and msg.value forwarding. Use msg.sender and msg.value directly where needed in libraries.

https://github.com/tokentrust/canvas/tree/3aafa6e3c42dc5509d2e9c33bdd3780bc9006522/contracts/Canvas.sol
https://github.com/tokentrust/canvas/tree/3aafa6e3c42dc5509d2e9c33bdd3780bc9006522/contracts/Canvas.sol
https://github.com/tokentrust/canvas/tree/3aafa6e3c42dc5509d2e9c33bdd3780bc9006522/contracts/Modules/Minting.sol

35 Variable shadowing

/" Informational

There are two cases of variable shadowing.

35.1 Case 1

In VRF.sol there is vrfCoordinator state variable that shadows same name variable inherited from
VRFConsumerBaseV2 . Both of these store the same address.

35.1.1 Recommendation

Remove the vrfCoordinator variable from CanvasVRF . Since the same address is stored in VRFConsumerBaseV2,
which is inherited by CanvasVRF, there is no need to store it. The variable defined in CanvasVRF was public and was of
type VRFCoordinatorV2Interface, while the one defined in VRFConsumerBaseV2 is private and of type address,
meaning the code will need additional changes. You need to add a getter function if you want to be able to get the
address from contract. Additionally, when making calls to vrfCoordinator you will have to use it like this:
VRFCoordinatorV2Interface(vrfCoordinator) . The gas consumption when using it like this is the same, since the
difference of defining address as contract type and casting an address to a contract type is purely visual. Furthermore,
this solution should use less gas because the vrfCoordinator defined in VRFConsumerBaseV2 is immutable, meaning
it becomes a part of the code on deployment and does not require reading from storage.

35.2 Case 2

In CanvasCollection.sol there is initialize function that takes name and symbol as arguments. The names of
these two arguments are the same as the names of functions defined in ERC721AUpgradable, which is inherited by

CanvasCollection.

35.2.1 Recommendation

Rename name and symbol in initialize functionto _name and _symbol.

https://github.com/tokentrust/canvas/tree/3aafa6e3c42dc5509d2e9c33bdd3780bc9006522/contracts/Chainlink/VRF.sol
https://github.com/tokentrust/canvas/tree/3aafa6e3c42dc5509d2e9c33bdd3780bc9006522/contracts/Collection/CanvasCollection.sol

36 Initialize can be external

/" Informational

In CanvasCollection.sol there is initialize function that is defined as public. Public functions can be called from
within the contract and externally. However, initialize is never called from within the contract, and therefore it
would be clearer if it would be defined external.

36.17 Recommendation

Change initialize function from public to external.

https://github.com/tokentrust/canvas/tree/3aafa6e3c42dc5509d2e9c33bdd3780bc9006522/contracts/Collection/CanvasCollection.sol

37 checkTransfer is always true

/" Informational

In View.sol there is a checkTransfer function that returns a bool value. However, this value is always true, otherwise
the function reverts. In CanvasCollection.sol there are several instances where checkTransfer is called. Each time it
is done in an if statement to verify that the return value is true . However since the result is always true (otherwise it
reverts), the check is unnecessary.

37.1 Example

If we look at this code form View.sol, we can see that checkTransfer returns !canvas.soulbound . But that will
always result in true, because we can see few lines above, that if canvas.soulbound is true, revert
NonTransferable() will be executed.

363 function checkTransfer(
364 address collectionAddress,
365 address from,
366 address to,
367 uint256 tokenId
368) external returns (
369 bool
370) {
371 Schema.Storage storage ds = canvasStorage();
372
373 uint256 canvasId;
374 if (collectionAddress == ds.contractInfo.canvasOneAddress) canvasId =
375 ds.canvasOne[tokenId];
376 else if (collectionAddress == ds.contractInfo.canvasOneCuratedAddress) canvasId =
377 ds.canvasOneCurated|tokenId];
378 else canvasId = ds.collectionToCanvas[collectionAddress];
379
380 Schema.Canvas storage canvas = ds.canvas[canvasId];
381 if (!ds.canvasSystem[canvasId].approved) revert InvalidToken();
382 if (canvas.soulbound) revert NonTransferable();
383
384 emit Transfer(collectionAddress, from, to, tokenId);

return !canvas.soulbound;

}

Taking a look at code of CanvasCollection.sol, we can see the if statement that is unnecessary.

if (ICanvas(canvasAddress).checkTransfer(from, to, tokenId)) {
super.transferFrom(from, to, tokenId);

}

37.2 Recommendation

https://github.com/tokentrust/canvas/tree/3aafa6e3c42dc5509d2e9c33bdd3780bc9006522/contracts/Modules/View.sol
https://github.com/tokentrust/canvas/tree/3aafa6e3c42dc5509d2e9c33bdd3780bc9006522/contracts/Collection/CanvasCollection.sol
https://github.com/tokentrust/canvas/tree/3aafa6e3c42dc5509d2e9c33bdd3780bc9006522/contracts/Modules/View.sol
https://github.com/tokentrust/canvas/tree/3aafa6e3c42dc5509d2e9c33bdd3780bc9006522/contracts/Collection/CanvasCollection.sol

In View.sol remove the return statement from checkTransfer, because there is no upside to returning a boolean that
is always true.

363 function checkTransfer(

364 address collectionAddress,

365 address from,

366 address to,

367 uint256 tokenId

368) external {

369 Schema.Storage storage ds = canvasStorage();

379

371 uint256 canvasId;

372 if (collectionAddress == ds.contractInfo.canvasOneAddress) canvasId =
373 ds.canvasOne[tokenId];

374 else if (collectionAddress == ds.contractInfo.canvasOneCuratedAddress) canvasIld =
375 ds.canvasOneCurated[tokenId];

376 else canvasId = ds.collectionToCanvas[collectionAddress];

377

378 Schema.Canvas storage canvas = ds.canvas[canvasId];

379 if (!ds.canvasSystem[canvasId].approved) revert InvalidToken();

380 if (canvas.soulbound) revert NonTransferable();

381

emit Transfer(collectionAddress, from, to, tokenId);

Remove the if statements in CanvasCollection.sol and just call the checkTransfer function.

ICanvas(canvasAddress).checkTransfer(from, to, tokenId)
super.transferFrom(from, to, tokenId);

https://github.com/tokentrust/canvas/tree/3aafa6e3c42dc5509d2e9c33bdd3780bc9006522/contracts/Modules/View.sol
https://github.com/tokentrust/canvas/tree/3aafa6e3c42dc5509d2e9c33bdd3780bc9006522/contracts/Collection/CanvasCollection.sol

38 Unused code in Customize.sol

/" Informational

In Customize.sol there is a getCustomization function that is empty and was probably left there by accident.

38.1 Recommendation

Remove the getCustomization function.

https://github.com/tokentrust/canvas/tree/3aafa6e3c42dc5509d2e9c33bdd3780bc9006522/contracts/Modules/Customize.sol

39 Redundant ERC20 approval

/" Informational

In Funds.sol there are 3 cases (L92, L211, L267) where the contract is approving itself for ERC20 transfer. But a
contract does not need approval to transfer its own funds. Therefore, these approvals are not needed.

39.1 Recommendation

Remove ERC20 approvals (IERC20(canvas.saleToken) .safeApprove) on lines: L92, L211, L267.

https://github.com/tokentrust/canvas/tree/3aafa6e3c42dc5509d2e9c33bdd3780bc9006522/contracts/Modules/Funds.sol

40 Redundant ERC20 balance check

/" Informational

In Minting.sol on line 470 it is checked if the sender has enough ERC20 tokens to execute the transfer. If he doesn't, it
reverts. However, if the sender would not have enough balance, the transfer would revert anyway, so there is no need
for such checks.

40.1 Recommendation

Remove line 470.

https://github.com/tokentrust/canvas/tree/3aafa6e3c42dc5509d2e9c33bdd3780bc9006522/contracts/Modules/Minting.sol

47 Double checking requireLicense

/" Informational

In URI.sol there is an if statement on line 105 that includes a check of canvas.requirelLicense . But at that part of the
code, the value will always be true, because it is already enforced a few lines above (L102).

102 if (canvas.requirelLicense) {

103 bool isValid;
104 (isValid, uri) = checkValidlLicense(collectionAddress, tokenId, refs[i]);
105 if ((canvas.requirelLicense && !isValid) || keccak256(bytes(uri)) ==
106 keccak256(bytes(''))) { unchecked { i++; } continue; }
}

47.1 Recommendation

Remove canvas.requirelLicense check from line 105 like this:

102 if (canvas.requirelLicense) {

103 bool isValid;
104 (isValid, uri) = checkValidlLicense(collectionAddress, tokenId, refs[i]);
105 if (!'isValid || keccak256(uri) == keccak256('')) { unchecked { i++; } continue; }

106 }

https://github.com/tokentrust/canvas/tree/3aafa6e3c42dc5509d2e9c33bdd3780bc9006522/contracts/Modules/URI.sol

47 ContractOwner is not an interface

/" Informational

The file IOwnable.sol includes an interface OwnableInterface and also a contract called ContractOwner . This can be
confusing since the file is located in Interfaces directory, and is named like an interface, but it includes a contract.

472 .1 Recommendation

Consider moving the contract part out of the file and create a separate file called ContractOwner.sol.

https://github.com/tokentrust/canvas/tree/3aafa6e3c42dc5509d2e9c33bdd3780bc9006522/contracts/Interfaces/IOwnable.sol

43 Usage of same functions for different actions

/" Informational

Throughout the code base there are multiple instances where one function is used to perform different actions. This
makes the execution more expensive, since it requires multiple additional parameters and if statements to chose
which action to perform. Also, each action in the function can require a different set of parameters.

43.1 Example

In Core.sol there is changeOwnership function used to change either curator address, dao address or canvas admin
address. It is used both to propose a new owner and to accept ownership. This makes the function complex and
requires additional parameters. Also in case the canvas admin is being changed, canvasId is needed, but if curator is
being changed the canvasId parameter is not used. This makes gas consumption for each of these actions higher.

43.2 Recommendation

| would recommend splitting the changeOwnership function, and making a different function for each action. You
could make changeCurator, acceptCurator, changeDao, acceptDao, changeCanvasAdmin, acceptCanvasAdmin .
This requires 5 more functions than before to be made, but the code is more readable and consumes less gas when
changing ownership. Of course this requires changeOwnership function in Canvas.sol to be split into 6 as well.

43.2.1 Other examples
Create.sol

e setCreatorsOrRefs can be splitinto setCreators and setRefs

e createOrUpdateCanvas can be splitinto createCanvas, updateCanvas, updateTraits and updateMintPass
Core.sol

e changeProtocolParameter
e approveCanvas can be splitinto curateCanvas and approveCanvas

e setVrfResult can be splitinto setVrfResult, setVrfPending and resetVrf
Customize.sol

e customizeToken can be splitinto updateTitle, updateSubtitle and updateRefs

e updateIdentifiers can be splitinto updateChipIds and updatePurchaselds

Funds.sol

e payoutAuctionOrDutchRefund can be splitinto claimExpiredRefund, payoutAuction and claimDutchRefund

https://github.com/tokentrust/canvas/tree/3aafa6e3c42dc5509d2e9c33bdd3780bc9006522/contracts/Modules/Core.sol
https://github.com/tokentrust/canvas/tree/3aafa6e3c42dc5509d2e9c33bdd3780bc9006522/contracts/Canvas.sol
https://github.com/tokentrust/canvas/tree/3aafa6e3c42dc5509d2e9c33bdd3780bc9006522/contracts/Modules/Create.sol
https://github.com/tokentrust/canvas/tree/3aafa6e3c42dc5509d2e9c33bdd3780bc9006522/contracts/Modules/Core.sol
https://github.com/tokentrust/canvas/tree/3aafa6e3c42dc5509d2e9c33bdd3780bc9006522/contracts/Modules/Customize.sol
https://github.com/tokentrust/canvas/tree/3aafa6e3c42dc5509d2e9c33bdd3780bc9006522/contracts/Modules/Funds.sol

44 Checks if a value is being changed use more gas

/" Informational

In Create.sol the updateCanvas function receives Schema.Canvas struct named update . It then compares every
value of this struct to current configuration of canvas to see if it is different. In case it is, it saves it to storage.
However, this does not save any more gas compared to just overwriting storage variable without checking. Overwriting
a storage variable consumes almost the same amount of gas as comparing it to the stored value. Furthermore, if a
value is changed, you are both checking and storing which consumes around 1000 gas more than just storing. Also,
you are saving only 40 gas if a variable is not changed.* So we can expect that overall checking for changes consumes
more gas than necessary and also makes the code less readable.

44 1 Recommendation

Consider removing checking for changes. Only leave the checks that are needed to validate that the change follows
the rules.

For example:

if (canvas.editioned != update.editioned)
canvas.editioned = update.editioned;

change the above code to:
canvas.editioned = update.editioned;

*Notice: The gas amounts are derived from my testing.

https://github.com/tokentrust/canvas/tree/3aafa6e3c42dc5509d2e9c33bdd3780bc9006522/contracts/Modules/Create.sol

45 Usage of SafeMath is redundant

/" Informational

The safeMath library is used to perform arithmetic operations. In older Solidity versions it was used to prevent
overflow/underflow. However, starting with Solidity 8.0 the compiler has built in overflow checking. Meaning that
SafeMath adds no additional safety to this code base. It is just wrapping arithmetic operations with no additional
checks. But maybe the intention of using it is purely visual or to avoid rewriting older code.

4517 Recommendation

Remove SafeMath library.

46 Poor logic in domainSeparator

/" Informational

In Minting.sol there is _domainSeparatorv4 function used to get the domain separator, needed for signature
verification. On line 71 there is a check that ds.contractInfo.canvasAddress equals ds._CACHED_THIS and
block.chainid equab ds._CACHED_CHAIN_ID. Ifitis true, _CACHED_DOMAIN_SEPARATOR is returned. However, the if
statement will always be true because ds._CACHED_THIS and ds._CACHED_CHAIN_ID are setto exactly those values
inthe initialize function and are never changed. In case that the result would somehow be false, the other line of
code that would be executed would not work either, because it needs ds._TYPE_HASH, ds._HASHED_NAME and
ds._HASHED_VERSION, which are only set in the initialize function as well. So you are counting on the contract
being initialized in both cases. This means that if one option works, the other does as well, and if one does not work,
the other does not either. We can see the constructor in Canvas.sol executes the initialize function, so we can
be sure that all the needed values are set. Therefore, _CACHED_DOMAIN_SEPARATOR can be returned and there is no
need for the if statement.

52 function initialize(string memory name, string memory version) external {
53 Schema.Storage storage ds = canvasStorage();
54
55 bytes32 hashedName = keccak256(bytes(name));
56 bytes32 hashedVersion = keccak256(bytes(version));
57 bytes32 typeHash = keccak256(
58 "EIP712Domain(string name, string version,uint256 chainld, address verifyingContract)"
59 I
60 ds._HASHED_NAME = hashedName;
61 ds._HASHED_VERSION = hashedVersion;
62 ds._CACHED_CHAIN_ID = block.chainid;
63 ds._CACHED_DOMAIN_SEPARATOR = _buildDomainSeparator(typeHash, hashedName, hashedVersion);
64 ds._CACHED_THIS = ds.contractInfo.canvasAddress;
65 ds._TYPE_HASH = typeHash;
66 }
67
68 function _domainSeparatorV4() internal view returns (bytes32) {
69 Schema.Storage storage ds = canvasStorage();
70
71 if (ds.contractInfo.canvasAddress == ds._CACHED_THIS && block.chainid ==
72 ds._CACHED_CHAIN_ID) {
73 return ds._CACHED_DOMAIN_SEPARATOR;
74 } else {
75 return _buildDomainSeparator(ds._TYPE_HASH, ds._HASHED_NAME, ds._HASHED_VERSION) ;
76 }
}

46.1 Recommendation

Consider removing the if statement in _domainSeparatorV4 and just return ds._CACHED_DOMAIN_SEPARATOR. Only
store the _CACHED_DOMAIN_SEPARATOR variable and remove other variables, because they are not needed.

52

https://github.com/tokentrust/canvas/tree/3aafa6e3c42dc5509d2e9c33bdd3780bc9006522/contracts/Modules/Minting.sol
https://github.com/tokentrust/canvas/tree/3aafa6e3c42dc5509d2e9c33bdd3780bc9006522/contracts/Canvas.sol

53
54
55
56
57
58
59
60
61
62
63

function initialize(string memory name, string memory version) external {
Schema.Storage storage ds = canvasStorage();
ds._CACHED_DOMAIN_SEPARATOR = _buildDomainSeparator(
keccak256 ("EIP712Domain(string name, string version,uint256 chainId, address
verifyingContract)")
keccak256 (bytes(name)),
keccak256 (bytes(version))
IE
}

function _domainSeparatorV4() internal view returns (bytes32) {
return canvasStorage()._CACHED_DOMAIN_SEPARATOR;

47 Redundant conversions in views

/" Informational

In View.sol there are multiple functions that return a struct from storage. In the process of doing that, the struct is first
saved to memory, converted to bytes, and then the bytes are returned. That is unnecessary, since you can just return
the struct and the return value will be the same. These functions are: contractInfo, getCanvasData and

getCanvasSystem.

47.1 Example

function contractInfo()
external view returns (
bytes memory
) A
Schema.ContractInfo memory info = canvasStorage().contractInfo;
return bytes.concat(
abi.encode(
info.daoAddress,
info.newDaoRequest,
info.curatorAddress,
info.newCuratorRequest,
info.canvasAddress,
info.licenseRegistryAddress,
info.tokenRegistryAddress,
info.vrfAddress,
info.keeperAddress,
info.keeperRegistrarAddress,
info.linkTokenAddress,
info.collectionContractAddress
IE
abi.encode(
info.canvasOneAddress,
info.canvasOneCuratedAddress,
info.protocolFeeRecipient,
info.protocolFeeBps,
info.protocolDutchRefundFeeBps,
info.canvasCounter,
info.canvasCuratedCounter,
info.canvasOpenCounter,
info.canvasOneCounter,
info.canvasOneCuratedCounter,
info.openCanvas,
info.openCanvasOne

47.2 Recommendation

Change the code like this:

https://github.com/tokentrust/canvas/tree/3aafa6e3c42dc5509d2e9c33bdd3780bc9006522/contracts/Chainlink/View.sol

function contractInfo()
external view returns (
Schema.ContractInfo memory
) A

return canvasStorage().contractInfo;

48 Usage of strings increases gas cost

/" Informational

Throughout the code base, there are multiple cases where strings are used to choose what action we want to perform.
However, these strings can use more memory compared to other types and must be hashed to compare. This adds
unnecessary gas cost, when you could use a small uint, bytes or an enum.

Functions that use strings: changeProtocolParameter, changeOwnership, setVrfResult, customizeToken

48.7 Example

In Core.sol there is changeProtocolParameter function that takes string parameter . It uses this string to choose
which parameter should be changed.

https://github.com/tokentrust/canvas/tree/3aafa6e3c42dc5509d2e9c33bdd3780bc9006522/contracts/Modules/Core.sol

function changeProtocolParameter (
address msgSender,
string memory parameter,
address addressVal,
uint256 numberVal,
string memory stringVal
) external {
Schema.Storage storage ds = canvasStorage();
if (msgSender !'= ds.contractInfo.daoAddress) revert NoPermission();

if (keccak256(bytes(parameter)) == keccak256(bytes('vrf'))) {
ds.contractInfo.vrfAddress = addressVal;
emit ContractUpdate();

} else if (keccak256(bytes(parameter)) == keccak256(bytes('keeper'))) {
ds.contractInfo.keeperAddress = addressVal;
emit ContractUpdate();

} else if (keccak256(bytes(parameter)) == keccak256(bytes('tokenRegistryAddress'))) {
ds.contractInfo.tokenRegistryAddress = addressVal;
emit ContractUpdate();

} else if (keccak256(bytes(parameter)) == keccak256(bytes('licenseRegistryAddress'))) {
ds.contractInfo.licenseRegistryAddress = addressVal;
emit ContractUpdate();

} else if (keccak256(bytes(parameter)) == keccak256(bytes('openCanvas'))) {
ds.contractInfo.openCanvas = numberVal == 0 ? false : true;
emit ContractUpdate();

} else if (keccak256(bytes(parameter)) == keccak256(bytes('openCanvasOne'))) {
ds.contractInfo.openCanvasOne = numberVal == @ ? false : true;
emit ContractUpdate();

} else if (keccak256(bytes(parameter)) == keccak256(bytes('protocolFeeRecipient'))) {
ds.contractInfo.protocolFeeRecipient = payable(addressVal);
emit ContractUpdate();

} else if (keccak256(bytes(parameter)) == keccak256(bytes('protocolFeeBps'))) {
if (numberVal > 3000) revert InvalidFee(); // Maximum 30% protocol fee possible
ds.contractInfo.protocolFeeBps = numberVal;
emit ContractUpdate();

} else if (keccak256(bytes(parameter)) == keccak256(bytes('protocolDutchRefundFeeBps'))) {
if (numberVal > 3000) revert InvalidFee(); // Maximum 30% protocol fee possible
ds.contractInfo.protocolDutchRefundFeeBps = numberVal;
emit ContractUpdate();

} else if (keccak256(bytes(parameter)) == keccak256(bytes('unlockCanvas'))) {
if (ds.canvas[numberVal].unlockRequest) ds.canvas[numberVal].isImmutable = false;
emit CanvasUpdate(numberVal);

} else if (keccak256(bytes(parameter)) == keccak256(bytes('externalBaseUrl'))) {
ds.externalBaseUrl = stringVal;

48.2 Recommmendation

Change string to uint or enum. Also consider splitting the function like described in Usage of same functions for
different actions.

enum ProtocolParameter {
vrf,
keeper,
tokenRegistryAddress,
licenseRegistryAddress,
openCanvas,
openCanvasOne,
protocolFeeRecipient,
protocolFeeBps,
protocolDutchRefundFeeBps,
unlockCanvas,
externalBaseUrl

}

function changeProtocolParameter (
address msgSender,
ProtocolParameter parameter,
address addressVal,
uint256 numberVal,
string memory stringVal
) external {
Schema.Storage storage ds = canvasStorage();
if (msgSender !'= ds.contractInfo.daoAddress) revert NoPermission();

if (parameter == ProtocolParameter.vrf) {
ds.contractInfo.vrfAddress = addressVal;
emit ContractUpdate();

} else if (parameter == ProtocolParameter.keeper) {
ds.contractInfo.keeperAddress = addressVal;
emit ContractUpdate();

} else if (parameter == ProtocolParameter.tokenRegistryAddress) {
ds.contractInfo.tokenRegistryAddress = addressVal;
emit ContractUpdate();

} else if (parameter == ProtocolParameter.licenseRegistryAddress) {
ds.contractInfo.licenseRegistryAddress = addressVal;
emit ContractUpdate();

} else if (parameter == ProtocolParameter.openCanvas)) {
ds.contractInfo.openCanvas = numberVal == @ ? false : true;
emit ContractUpdate();

} else if (parameter == ProtocolParameter.openCanvasOne) {
ds.contractInfo.openCanvasOne = numberVal == @ ? false : true;
emit ContractUpdate();

} else if (parameter == ProtocolParameter.protocolFeeRecipient)
ds.contractInfo.protocolFeeRecipient = payable(addressVal);
emit ContractUpdate();

} else if (parameter == ProtocolParameter.protocolFeeBps) {
if (numberVal > 3000) revert InvalidFee(); // Maximum 30% protocol fee possible
ds.contractInfo.protocolFeeBps = numberVal;
emit ContractUpdate();

} else if (parameter == ProtocolParameter.protocolDutchRefundFeeBps) {
if (numberVal > 3000) revert InvalidFee(); // Maximum 30% protocol fee possible
ds.contractInfo.protocolDutchRefundFeeBps = numberVal;
emit ContractUpdate();

} else if (parameter == ProtocolParameter.unlockCanvas) {
if (ds.canvas[numberVal].unlockRequest) ds.canvas[numberVal].isImmutable = false;
emit CanvasUpdate(numberVal);

} else if (parameter == ProtocolParameter.externalBaseUrl) {
ds.externalBaseUrl = stringVal;

* Notice: When using enums, the values correspond to uint8 values 0, 1, 2 and so on in the order they are defined in. In
case that you call the function with an out of range value, a panic exception ex21 will be generated, like it is
described in the documentation.

https://docs.soliditylang.org/en/v0.8.15/control-structures.html?highlight=enum#panic-via-assert-and-error-via-require

49 Other small inefficiencies

/" Informational

49.1 Inefficiency 1

In CanvasCreator.sol there is _IMPLEMENTATION_SLOT constant. In its definition it is given a value of
0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbce . In constructor it is then validated that it
equals to keccak-256 hash of "eip1967.proxy.implementation” subtracted by 1. This validation is unnecessary, because
it will always be right, unless you change the code.

49.1.1 Solution

Remove line 12 assert(_IMPLEMENTATION_SLOT ==
bytes32(uint256(keccak256("eip1967.proxy.implementation”)) - 1)); . If you want to be sure that the value is
right, and you are not sure in the hardcoded hex value, then just replace it with
bytes32(uint256(keccak256("eip1967.proxy.implementation”)) - 1). It will give the same result.

bytes32 internal constant _IMPLEMENTATION_SLOT =
bytes32(uint256 (keccak256("eip1967.proxy.implementation”)) - 1);

49.2 Inefficiency 2

In Core.sol, in the setVrfResult function tokenCounter is subtracted by randomizedTraitCounter to get the
remainder . If the remainder is higher than 0, then randomizedTraitCounter is added up with remainder and
saved. There is no point to making this calculation since randomizedTraitCounter + remainder will always equal

tokenCounter .
310 uint256 tokenCounter = ds.canvasSystem|[canvasId].tokenIdCounter;
311 uint256 remainder = tokenCounter.sub(ds.canvasSystem|[canvasId].randomizedTraitsCounter);
312
313 if (ds.canvasSystem[canvasId].vrfPending && remainder > 0) {
314 ds.randomizedTraits[canvasId].push(Schema.RandomTraits({
315 randomizedAtTokenId: tokenCounter,
316 randomWord: randomWord
317 1))
318
319 ds.canvasSystem[canvasId].randomizedTraitsCounter =
320 ds.canvasSystem[canvasId].randomizedTraitsCounter.add(remainder) ;
321 ds.canvasSystem[canvasId].vrfPending = false;
322 ds.canvasSystem[canvasId].vrflLastRunTimestamp = block.timestamp;
323 emit VRFResult(canvasId, tokenCounter, randomWord);
}

49.2.1 Solution

https://github.com/tokentrust/canvas/tree/3aafa6e3c42dc5509d2e9c33bdd3780bc9006522/contracts/Collection/CanvasCreator.sol
https://github.com/tokentrust/canvas/tree/3aafa6e3c42dc5509d2e9c33bdd3780bc9006522/contracts/Modules/Core.sol

Remove the calculation (ds.canvasSystem[canvasId].randomizedTraitsCounter.add(remainder)) and replace it

with tokenCounter .

310
311
312
13
314
315
316
317
318
319
320
321
322

uint256 tokenCounter = ds.canvasSystem|[canvasId].tokenIdCounter;

if (ds.canvasSystem[canvasId].vrfPending &&
tokenCounter.sub(ds.canvasSystem[canvasId].randomizedTraitsCounter) > 0) {
ds.randomizedTraits[canvasId].push(Schema.RandomTraits({
randomizedAtTokenId: tokenCounter,
randomWord: randomWord

1)

ds.canvasSystem[canvasId].randomizedTraitsCounter = tokenCounter;
ds.canvasSystem[canvasId].vrfPending = false;
ds.canvasSystem[canvasId].vrflLastRunTimestamp = block.timestamp;
emit VRFResult(canvasId, tokenCounter, randomWord);

49.3 Inefficiency 3

In Create.sol there is createCanvas function that on line 114 stores a value to storage and then reads it multiple

times. Reading from storage is more expensive than reading from memory. So caching the value to memory and

reading it from there would be more optimal.

114
115
116
117
118
119
120
121

ds.contractInfo.canvasCounter = ds.contractInfo.canvasCounter.add(1);
ds.canvas[ds.contractInfo.canvasCounter] = canvas;
ds.canvas[ds.contractInfo.canvasCounter].admin = msgSender;

ds.creators[ds.contractInfo.canvasCounter] = new address[](1);
ds.creators[ds.contractInfo.canvasCounter][0] = msgSender;

if (canvas.feeRecipient == address(0)) ds.canvas[ds.contractInfo.canvasCounter].feeRecipient
= payable(msgSender) ;

return ds.contractInfo.canvasCounter;

49 3.1 Solution

Cache the value to memory and read it from there.

114
115
116
117
118
119
120
121

uint256 canvasId = ++ds.contractInfo.canvasCounter;

ds.canvas[canvasId] = canvas;

ds.canvas[canvasId].admin = msgSender;

ds.creators[canvasId] = new address[](1);

ds.creators[canvasId][0] = msgSender;

if (canvas.feeRecipient == address(@)) ds.canvas[canvasId].feeRecipient =
payable(msgSender) ;

return canvasId;

In above example, feeRecipient and admin are changed when canvas is already saved to storage. You can also

make those changes in memory first and store the canvas after.

114

https://github.com/tokentrust/canvas/tree/3aafa6e3c42dc5509d2e9c33bdd3780bc9006522/contracts/Modules/Create.sol

115

116 uint256 canvasId = ++ds.contractInfo.canvasCounter;

canvas.admin = msgSender;

11; if (canvas.feeRecipient == address(0)) canvas.feeRecipient = payable(msgSender) ;
119 ds.canvas[canvasId] = canvas;

120 ds.creators[canvasId] = new address[](1);

121 ds.creators[canvasId][0] = msgSender;

return canvasId;

49 4 Inefficiency 4

In Create.sol on line 359, a new struct is created and saved to storage. The struct includes mintCounter variable,
which must stay the same as it was before. This means that the value must be read from storage and then included in
the new struct being saved. This is unnecessarily complex, when you can just update the values that are being

changed.
359 ds.partners[canvasId][partners[i]] = Schema.Partnership({
360 discountBps: discounts[i],
361 allocation: allocation[i],
362 mintCounter: ds.partners[canvasId][partners[i]].mintCounter
363 });

49 .4.1 Solution

Only update the discountBps and allocation.

359 ds.partners[canvasId][partners[i]].discountBps = discounts[i];
360 ds.partners[canvasId][partners[i]].allocation = allocation[i];

49.5 Inefficiency 5

In Minting.sol the mint function receives data and then decodes it using getMintRequest to get MintRequest
struct. However, the function could receive MintRequest by default. Also, in that case the mintRequest would stay as
calldata and wouldn't need to use memory.

https://github.com/tokentrust/canvas/tree/3aafa6e3c42dc5509d2e9c33bdd3780bc9006522/contracts/Modules/Create.sol
https://github.com/tokentrust/canvas/tree/3aafa6e3c42dc5509d2e9c33bdd3780bc9006522/contracts/Modules/Minting.sol

function mint(
address msgSender,
uint256 ethValue,
uint256 canvasId,
bytes calldata data
) external nonReentrant {
Schema.Storage storage ds = canvasStorage();
Schema.Canvas storage canvas = ds.canvas|[canvasId];

Schema.MintRequest memory mintRequest = getMintRequest(data);

if (!canvas.reserveAuction) defaultMint(msgSender, canvasId, ethValue, mintRequest);
else {

mintReserveAuction(msgSender, canvasId, mintRequest.selectedTraits);

emit OneMinted(msgSender, canvasId, mintRequest);

}

49.5.1 Solution

Remove conversion of data to MintRequest and accept MintRequest as argument.

function mint(
uint256 canvasId,
Schema.MintRequest calldata mintRequest
) external nonReentrant {
Schema.Canvas storage canvas = canvasStorage().canvas[canvasId];

if (!canvas.reserveAuction) defaultMint(msg.sender, canvasId, msg.value, mintRequest);
else {

mintReserveAuction(msg.sender, canvasId, mintRequest.selectedTraits);

emit OneMinted(msg.sender, canvasId, mintRequest);

}

*Notice: in this solution msgSender and ethValue were also removed, as stated in Redundant use of msg.sender and
msg.value.

49.6 Inefficiency 6

In Minting.sol the checkCanMint function gets storage of a canvas Schema.Canvas storage canvas =
ds.canvas|[canvasId], but then proceeds to access it multiple times using ds.canvas[canvasId] instead of canvas.

231 Schema.Canvas storage canvas = ds.canvas[canvasId];

232

233 if (canvas.bulkMax > 0 && mintRequest.quantity > canvas.bulkMax)

234 revert OverMintLimit(canvas.bulkMax) ;

235 if (ds.partners[canvasId][msgSender].discountBps > 0) {

236 if (ds.partners[canvasId][msgSender].mintCounter + mintRequest.quantity >
237 ds.partners[canvasId][msgSender].allocation)

238 revert OverAllowance(ds.partners[canvasId][msgSender].allocation);

239 ds.partners[canvasId][msgSender].mintCounter += mintRequest.quantity;

240 } else if (canvas.walletMax > © && ds.purchaseTracker[canvasId][msgSender].quantity +
241 mintRequest.quantity > canvas.walletMax)

https://github.com/tokentrust/canvas/tree/3aafa6e3c42dc5509d2e9c33bdd3780bc9006522/contracts/Modules/Minting.sol

242 revert OverMintLimit(canvas.walletMax - ds.purchaseTracker[canvasId][msgSender].quantity);
243

244

245 if (ds.canvas[canvasId].presaleActive && !ds.canvas[canvasId].saleActive) {
246 if (ds.canvas[canvasId].mintPassPerQuantity > 0 &&

247 ds.mintPassTokens[canvasId].length > 9)

248 processMintPass(msgSender, canvasId, mintRequest);

249 else checkAllowList(msgSender, canvasId, mintRequest);

250 } else {

251 if (canvas.saleStart > 0 &&

252 (canvas.saleStart > block.timestamp || canvas.saleEnd < block.timestamp) ||
253 Ids.canvas[canvasId].saleActive)

254 revert SaleInactive();

2B

256 if (ds.canvas[canvasId].mintPassPerQuantity > 0 &&

257 ds.mintPassTokens[canvasId].length > 9)

258 processMintPass(msgSender, canvasId, mintRequest);

259 else if (ds.canvas[canvasId].restrictToAllowList)

checkAllowList(msgSender, canvasId, mintRequest);

49.6.1 Solution

Replace ds.canvas[canvasId] with canvas.

231 Schema.Canvas storage canvas = ds.canvas[canvasId];

232

233 if (canvas.bulkMax > 0 && mintRequest.quantity > canvas.bulkMax)

234 revert OverMintLimit(canvas.bulkMax) ;

235 if (ds.partners[canvasId][msgSender].discountBps > 0) {

236 if (ds.partners[canvasId][msgSender].mintCounter + mintRequest.quantity >
237 ds.partners[canvasId][msgSender].allocation)

238 revert OverAllowance(ds.partners[canvasId][msgSender].allocation);

239 ds.partners[canvasId][msgSender].mintCounter += mintRequest.quantity;

240 } else if (canvas.walletMax > © && ds.purchaseTracker[canvasId][msgSender].quantity +
241 mintRequest.quantity > canvas.walletMax)

242 revert OverMintLimit(canvas.walletMax - ds.purchaseTracker|[canvasId][msgSender].quantity);
243

244

245 if (canvas.presaleActive && !canvas.saleActive) {

246 if (canvas.mintPassPerQuantity > 0 &&

247 ds.mintPassTokens[canvasId].length > 9)

248 processMintPass(msgSender, canvasId, mintRequest);

249 else checkAllowList(msgSender, canvasId, mintRequest);

250 } else {

251 if (canvas.saleStart > 0 &&

252 (canvas.saleStart > block.timestamp || canvas.saleEnd < block.timestamp) ||
253 Icanvas.saleActive)

254 revert SaleInactive();

255

256 if (canvas.mintPassPerQuantity > 0 &&

257 ds.mintPassTokens[canvasId].length > 0)

258 processMintPass(msgSender, canvasId, mintRequest);

259 else if (canvas.restrictToAllowList)

checkAllowList(msgSender, canvasId, mintRequest);

49.7 Inefficiency 7

In URI.sol the getSelectedTraits function gets canvasStorage() two times unnecessarily. The first time it is saved
to ds variable, meaning there is no need to get it the second time, because it can be accessed using ds.

Schema.Storage storage ds = canvasStorage();
uint256 canvasId = ds.collectionToCanvas[collectionAddress];
Schema.CanvasTraits[] storage canvasTraits = canvasStorage().canvasTraits[canvasId];

49.7.1 Solution

Replace the second canvasStorage with ds.

Schema.Storage storage ds = canvasStorage();
uint256 canvasId = ds.collectionToCanvas[collectionAddress];
Schema.CanvasTraits[] storage canvasTraits = ds.canvasTraits[canvasId];

49.8 Inefficiency 8

In URIL.sol the getSelectedTraits function overwrites encodedTraits with its own value in case hasTrait is false.

encodedTraits = hasTrait ?
string(abi.encodePacked(
keccak256 (bytes(encodedTraits)) != keccak256(bytes('')) ?
selectedTraits
: Parser.substring(selectedTraits, 0, bytes(selectedTraits).length.sub(1)),
encodedTraits
)) : encodedTraits;

49 8.1 Solution

Change the code so you only update encodedTraits if hasTrait is true.

if(hasTrait) {
encodedTraits = string(
abi.encodePacked(
keccak256(bytes(encodedTraits)) != keccak256(bytes('"')) ?
selectedTraits
: Parser.substring(selectedTraits, 0, bytes(selectedTraits).length.sub(1))
encodedTraits

)

499 Inefficiency 9

In URI.sol the tokenURI function is making same hashing and comparison two times (L489 and L505), same
conversion of uint to string three times (L484, L490 and L499) and there is also a redundant encodePacked operation
on line 496. All of these increase gas cost.

https://github.com/tokentrust/canvas/tree/3aafa6e3c42dc5509d2e9c33bdd3780bc9006522/contracts/Modules/URI.sol
https://github.com/tokentrust/canvas/tree/3aafa6e3c42dc5509d2e9c33bdd3780bc9006522/contracts/Modules/URI.sol
https://github.com/tokentrust/canvas/tree/3aafa6e3c42dc5509d2e9c33bdd3780bc9006522/contracts/Modules/URI.sol

478 string memory animationUrl = string(abi.encodePacked(
479 ds.canvasAssets[canvasId]|[versionIndex].baseUri,
480 getRefUri(collectionAddress, tokenId),
481 specialParams,
482 getCustomTitles(collectionAddress, tokenId),
483 ‘&id=",
484 Parser.uint2str(tokenId)
485));
486
487 string memory tokenAddressString = string(abi.encodePacked(
488 Parser.addressToString(collectionAddress),
489 keccak256 (bytes(canvas.externalUrl)) != keccak256(bytes('')) && canvas.externalUrlSlash ?
490 B
491 Parser.uint2str(tokenId)
492 |));
493
494 return string(abi.encodePacked(
495 "data:application/json;base64,",
496 Base64.encode(bytes(abi.encodePacked(
497 "{"name":""', string(abi.encodePacked(
498 canvas.name,
499 canvas.editioned ? ' #' Y
500 canvas.editioned ? Parser.uint2str(tokenId) : '')),
501 ‘", "description":"', usageDescription(canvasId, collectionAddress, tokenId),
502 """ "image":"',6ds.canvasAssets[canvasId][versionIndex].thumbnailUri,
503 "" "animation_url":"',animationUrl,
504 "" "collection_url":"', canvas.collectionUri,
505 """ "external_url":"",
506 keccak256(bytes(canvas.externalUrl)) !'= keccak256(bytes('"')) ?
507 canvas.externalUrl
508 ds.externalBaseUrl
509 , tokenAddressString,
510 "" "attributes": [', encodedTraits,'] }
511))))
IE

49.9.1 Solution

Cache the result of conversion (Parser.uint2str(tokenId)) and comparison
(keccak256 (bytes(canvas.externalUrl)) != keccak256(bytes('")))to memory. Remove the redundant

encodePacked operation.

478 string tokenIdStr = Parser.uint2str(tokenId);

479 bool hasExternalUrl = keccak256(bytes(canvas.externalUrl)) != keccak256(bytes('"));
480

481 string memory animationUrl = string(abi.encodePacked(

482 ds.canvasAssets[canvasId][versionIndex].baseUri,

483 getRefUri(collectionAddress, tokenId),

484 specialParams,

485 getCustomTitles(collectionAddress, tokenId),

486 ‘&id=",

487 tokenIdStr

488));

489

490 string memory tokenAddressString = string(abi.encodePacked(
491 Parser.addressToString(collectionAddress),

492 hasExternalUrl && canvas.externalUrlSlash ? "/" : ":",

493 tokenIdStr

494));

495

496 return string(abi.encodePacked(

497 "data:application/json;base64, ",

498 Base64.encode(bytes(abi.encodePacked(

499 "{"name":"",

500 canvas.name,

501 canvas.editioned ? ' #' : '',

502 canvas.editioned ? tokenIdStr : '',

503 "", "description":"', usageDescription(canvasId, collectionAddress, tokenId),
504 """, "image":"',6ds.canvasAssets[canvasId][versionIndex].thumbnailUri,
505 "" "animation_url":"',animationUrl,

506 "" "collection_url":"', canvas.collectionUri,

507 """ "external_url":"",

508 hasExternalUrl ?

509 canvas.externalUrl

510 ds.externalBaseUrl

511 , tokenAddressString,

512 "" "attributes": [', encodedTraits,'] }

513))))
514);

50 Disclaimer

Perfect Abstractions LLC receives payment from clients (the “Clients”) for reviewing code and writing these reports
(the “Reports”).

The Reports are not an accusation or endorsement of any project or team, and the Reports do not guarantee the
security of any project. No Report provides any warranty or representation to any Third-Party in any respect, including
regarding the bug-free nature of code, the business model or proprietors of any such business model, and the legal
compliance of any such business. To remove any doubt, this Report is not investment advice, is not intended to be
relied upon as investment advice, is not an endorsement of this project or team, and it is not a guarantee as to the
security of the project.

The Reports are created for Clients and published with their consent. The scope of our review is limited to the code or
files that are specified in this report. The Solidity language remains under development and is subject to unknown
risks and flaws. The review does not extend to the compiler layer, or any other areas beyond specified code that could
present security risks.

